
Quantum info in TCS
Lecture 6: Coding over quantum channel

Suppose a quantum channel NA→B is connected Alice to Bob. Alice wants to transmit “information” to
Bob over this channel. The information Alice can transmit can be either classical or quantum.

1 Sending classical information over classical channels
Consider a classical channel where Alice sends x ∈ {0, 1} and Bob receives x⊕ z where z is Bernoulli(p).

Multiple independent use of channel With one use of the channel, Alice cannot do anything non-trivial.
So we consider n independent uses of the channel. Alice has m bits and encode it into a binary string of n
bits and transmits it over the channel. Bob receives the noisy version and attempts to recover the original m
bits

Repetition code As an example, suppose Alice has one bit b ∈ {0, 1}. She encodes this into n bits by
repetition and transmits it over the channel. Bob does majority voting for decoding. If more than half of the
received bits are 1 he decodes the bit as one, otherwise as zero.

Rate vs probability of error There are two important parameters of every code.

1. Rate: it is the number of bits transmitted per channel use, i.e., m/n. For repetition code, the rate is
1/n.

2. Probability of error: It is the probability that Bob cannot decode any transmitted bits. For repetition
code, it is

∑(n−1)/2
i=0 (1− p)n−ipi, which converges to zero if p < 1

2 .

Formal definition of a code Fix the number of bits to be transmitted m and the number of channel
uses n. The code consists of two functions f : {0, 1}m → {0, 1}n for encoding and g : {0, 1}n → {0, 1}m
for decoding. Alice encodes m bits b1, · · · , bm into a codeword of length n using x = f(b1, · · · , bm) and
transmits x over n uses of the channel. Bob receives y at the output of the channel and decodes the bits as
b̂1, · · · , b̂m = g(y).

Shannon channel coding

Theorem 1.1. There exists a sequence of codes (fn, gn)n≥1 such that the probability of error goes to zero
and the rate is converging to 1− h2(p).

Here h2(x) := −x log(x)− (1− x) log(1− x) is the binary entropy function. A few remarks about channel
coding:

1. 1− h2(p) = I(X : Y ) where X is uniformly distributed bit and Y is the output of the channel when X
is transmitted.

2. The optimal decoder for BSC is minimum distance decoder. It is not computationally efficient

3. We can generalize this theorem to any channel.
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Random coding A code is characterized by the set of all codewords. We consider a random code where all
codewords are chosen independently at random. Let x(1), · · · , x(2nR) ∈ {0, 1}n be the random codewords for
R = 1− h2(p)− δ for a fixed δ > 0. The decoder works as follows. Fix ϵ > 0. If there is a unique i such that
|x(i)⊕ y|1 is between (1− ϵ)np and (1 + ϵ)np then the decoded value would be i. Otherwise, the decoder
output 1. To analyze the probability of error, assume that the codeword x(1) is transmitted over the channel.
Then, by law of large number |x(1)⊕ y| is between (1− ϵ)np and (1 + ϵ)np with high probability. We need to
show that with high probability there is not i ≠ 1 such that |x(i)⊕ y| is between (1− ϵ)np and (1 + ϵ)np. By
union bound, we have

Pr[∃i ̸= 1 : (1− ϵ)np < |x(i)⊕ y| < (1 + ϵ)np] ≤
2nR∑
i=2

Pr[(1− ϵ)np < |x(i)⊕ y| < (1 + ϵ)np] (1)

= (2nR − 1)Pr[(1− ϵ)np < |x(2)⊕ y| < (1 + ϵ)np] (2)

Note that x(2)⊕ y has uniform distribution. Therefore,

Pr[(1− ϵ)np < |x(2)⊕ y| < (1 + ϵ)np] =
#{x : (1− ϵ)np ≤ |x| ≤ (1 + ϵ)np}

2n
≈ 2−n(1−h2(p)) (3)

By our choice of R, the second type of probability of error goes to zero as well.

1|x| is the number of 1 in a binary string x
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