Quantum info in TCS Lecture 6: Coding over quantum channel

Suppose a quantum channel $\mathcal{N}_{A\to B}$ is connected Alice to Bob. Alice wants to transmit "information" to Bob over this channel. The information Alice can transmit can be either classical or quantum.

1 Sending classical information over classical channels

Consider a classical channel where Alice sends $x \in \{0,1\}$ and Bob receives $x \oplus z$ where z is Bernoulli(p).

Multiple independent use of channel With one use of the channel, Alice cannot do anything non-trivial. So we consider n independent uses of the channel. Alice has m bits and encode it into a binary string of n bits and transmits it over the channel. Bob receives the noisy version and attempts to recover the original m bits

Repetition code As an example, suppose Alice has one bit $b \in \{0, 1\}$. She encodes this into n bits by repetition and transmits it over the channel. Bob does majority voting for decoding. If more than half of the received bits are 1 he decodes the bit as one, otherwise as zero.

Rate vs probability of error There are two important parameters of every code.

- 1. Rate: it is the number of bits transmitted per channel use, i.e., m/n . For repetition code, the rate is $1/n$.
- 2. Probability of error: It is the probability that Bob cannot decode any transmitted bits. For repetition code, it is $\sum_{i=0}^{(n-1)/2} (1-p)^{n-i} p^i$, which converges to zero if $p < \frac{1}{2}$.

Formal definition of a code Fix the number of bits to be transmitted m and the number of channel uses n. The code consists of two functions $f: \{0,1\}^m \to \{0,1\}^n$ for encoding and $g: \{0,1\}^n \to \{0,1\}^m$ for decoding. Alice encodes m bits b_1, \dots, b_m into a codeword of length n using $x = f(b_1, \dots, b_m)$ and transmits x over n uses of the channel. Bob receives y at the output of the channel and decodes the bits as $\hat{b}_1, \cdots, \hat{b}_m = g(y).$

Shannon channel coding

Theorem 1.1. There exists a sequence of codes $(f_n, g_n)_{n>1}$ such that the probability of error goes to zero and the rate is converging to $1-h_2(p)$.

Here $h_2(x) := -x \log(x) - (1-x) \log(1-x)$ is the binary entropy function. A few remarks about channel coding:

- 1. $1 h_2(p) = I(X : Y)$ where X is uniformly distributed bit and Y is the output of the channel when X is transmitted.
- 2. The optimal decoder for BSC is minimum distance decoder. It is not computationally efficient
- 3. We can generalize this theorem to any channel.

Random coding A code is characterized by the set of all codewords. We consider a random code where all codewords are chosen independently at random. Let $x(1), \dots, x(2^{nR}) \in \{0,1\}^n$ be the random codewords for $R = 1 - h_2(p) - \delta$ for a fixed $\delta > 0$. The decoder works as follows. Fix $\epsilon > 0$. If there is a unique i such that $|x(i) \oplus y|^1$ $|x(i) \oplus y|^1$ is between $(1 - \epsilon)np$ and $(1 + \epsilon)np$ then the decoded value would be *i*. Otherwise, the decoder output 1. To analyze the probability of error, assume that the codeword $x(1)$ is transmitted over the channel. Then, by law of large number $|x(1) \oplus y|$ is between $(1 - \epsilon)np$ and $(1 + \epsilon)np$ with high probability. We need to show that with high probability there is not $i \neq 1$ such that $|x(i) \oplus y|$ is between $(1 - \epsilon)np$ and $(1 + \epsilon)np$. By union bound, we have

$$
\Pr[\exists i \neq 1 : (1 - \epsilon)np < |x(i) \oplus y| < (1 + \epsilon)np] \le \sum_{i=2}^{2nR} \Pr[(1 - \epsilon)np < |x(i) \oplus y| < (1 + \epsilon)np] \tag{1}
$$

$$
= (2^{nR} - 1) \Pr[(1 - \epsilon)np < |x(2) \oplus y| < (1 + \epsilon)np] \tag{2}
$$

Note that $x(2) \oplus y$ has uniform distribution. Therefore,

$$
\Pr[(1-\epsilon)np < |x(2) \oplus y| < (1+\epsilon)np] = \frac{\#\{x : (1-\epsilon)np \le |x| \le (1+\epsilon)np\}}{2^n} \approx 2^{-n(1-h_2(p))} \tag{3}
$$

By our choice of R , the second type of probability of error goes to zero as well.

 $\frac{1}{x}$ is the number of 1 in a binary string x