
Quantum info in TCS
Lecture 5: Data processing inequality

Data processing inequality Recall that the quantum relative entropy between two two density operators
ρ and σ is defined as

D(ρ∥σ) := tr ρ(log ρ− log σ) (1)

We can extend this definition to when ρ is any positive operator. The data processing inequality states that
for any quantum channel N , we have

D(N (ρ)∥N (σ)) ≤ D(ρ∥σ) (2)

The intuition is that when you process your data, you loose information. Therefore, different states get closer
to each other under any information processing. The same inequality holds for other distance measures such
as trace norm and

Applications

1. (Strong) Subadditivity of entropy If X and Y are two random variables, one can check that
H(X|Y ) = H(X,Y ) − H(Y ). So it makes sense to define the quantum conditional entropy for a
bipartate density operator ρAB as

H(A|B)ρ = H(ρAB)−H(ρB) (3)

where H(ρ) := − tr(ρ log ρ). This definition coincides with classical definition if ρAB is classical. For
classical definition, we always have 0 ≤ H(X|Y ) ≤ H(X). The first inequality saturates when X is a
function of Y and the second inequality saturates when X is independent of Y . However, for quantum
definition, H(A|B)ρ can be negative. For example, take ρAB to be the maximally entangled state.
Intuitively, when A and B are entangled, the correlation between A and B is stronger than when A is
just a classical function of B.
The upper bound H(A|B)ρ ≤ H(A)ρ still holds (known as subadditivity of entropy). To see this, we
can write

H(A)ρ −H(A|B)ρ = D(ρAB∥ρA ⊗ ρB) ≥ 0, (4)

where the last inequality is due to the positivity of quantum relative entropy.
Now consider a tripartite quantum density operator ρABC . Strong subadditivity of entropy states that
H(A|BC)ρ ≤ H(A|B)ρ. We cannot prove this by just using positivity of quantum relative entropy.
However, note that

H(A|BC)ρ = −D(ρABC∥1A ⊗ ρBC) (5)
H(A|B)ρ = −D(ρAB∥1A ⊗ ρB). (6)

Therefore, applying data processing inequality for quantum channel partial trace wrt to C, we obtain
strong subaddititvity of quantum entropy.
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2. Holevo bound Consider a classical random variable X and some quantum side information A about
X. In general, this can be described by a classical-quantum state rhoXA =

∑
x PX(x) |x⟩⟨x| ⊗ ρxA.

Now you perform a POVM {My}y on register A and obtain a classical random variable Y . If ρXY is
(classical) density operator of random variables X,Y , we can write

ρXY = (1X ⊗M)(ρXA) (7)

for quantum channel

M(ρ) =
∑
y

tr(Myρ) |y⟩⟨y| , (8)

describing POVM {My}y. Data processing inequality implies that

I(X : A) ≥ I(X : Y ) (9)

Intuitively, this says that by performing any measurement on A, you cannot obtain more than I(X : A)
bits of information about X.

3. Joint convexity of quantum relative entropy Let ρ0, ρ1 and σ0, σ2 be four density operator and
λ ∈ [0, 1]. Then, we have

D(λρ0 + (1− λ)ρ1∥λσ0 + (1− λ)σ1) ≤ λD(ρ0∥σ0) + (1− λ)D(ρ1∥σ1) (10)

We can prove this by applying data processing inequality to states

ρ = λ |0⟩⟨0| ⊗ ρ0 + (1− λ) |1⟩⟨1| ⊗ ρ1 (11)
σ = λ |0⟩⟨0| ⊗ σ0 + (1− λ) |1⟩⟨1| ⊗ σ1 (12)

and quantum channel being partial trace wrt to the first system.
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