Lec 9: Rondon extinctors
Obtaining good random ness from weak randomness
X weak random ness / it is correlated
(low entropy) with another
classical or grach
Goal: obtain X uniform & ind of E
X (minimal assumption
Alice
$$=$$
 Bab
Eve
E
X ~ (N)
Ext: $[N] \rightarrow [M]$ $E = extractor
if $II = Ext(X) - Imisflict \le E$
H(X) $\supset K \implies ?$
Example: $X = \int uniform = bit = with prob V_Z
constant $u = v$$$

Ext:
$$[N] \longrightarrow [M] \quad \varepsilon_{-} extracta$$

if $\| = Ext(X) - Punifll_{1} \leq \varepsilon$

$$H(x) \geqslant k \implies ?$$

$$Example: X = \int uniform n bit with prob 1/2
constant u u 1/2$$

H(X) = 12(n) but you cannot extract randomness

$$\begin{array}{llllllll} \forall \mathcal{N} & \forall k & \forall k & \forall k & \mathsf{K} & \mathsf{F-source} \\ m = k - 2 lg(V_{\mathcal{E}}) - 9(1) & \mathsf{Ext} : [\mathcal{N}) - 5(\mathcal{M}) & \mathsf{vondom} \\ & & & \\ Pr[\Pi & \mathsf{Ext}(X) - Punifll_{1} \geqslant k] & \leq 2^{-\mathcal{R}(Kk^{2})} \\ & & \\ \hline \forall & \mathsf{F-source} & \exists & \mathsf{Ext} & & \\ \hline \forall & \mathsf{F-source} & \exists & \mathsf{Ext} & & \\ & & & \\ \hline \forall & \mathsf{F-source} & \exists & \mathsf{Ext} & & \\ & & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \\ \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline$$

Ext: $(n) \times (D) \longrightarrow (n)$ seeded extract ($\kappa_{\ell} \epsilon$) _ extractor if $Ext(X, Ud) \approx \epsilon$ unif