Lecture 7: Classical 8 pountum channel coding

$$
m \frac{1}{2}i^{2}y - \frac{en}{\pi} \frac{BSC(P)}{w^{n}}
$$

We say rate R achievable if
$$
\frac{1}{2}
$$
 reg
\nof codes with vanishing prob. of error b
\nrate $\rightarrow R$
\nmax achievable rate 1-h₂(P) C-p₂(P)
\nGeneral Channel:
\n $\frac{1}{\sqrt{N_1 + \frac{1}{N_2}}}$
\nConjecting is mat achievable rate
\nThink = max $I(X: Y)$
\n $\frac{1}{X}XY = P_X * R_{I1X}$
\nBSC(P) : any $I(X:Y) = I - I_{2}(Y)$
\n $\frac{1}{X}X$

 $I(X: Y) = H(Y \setminus X) = H(Y \setminus Y) - \bigcup_{x \in X} H(Y \setminus x)$ $= H(Y) - h_{c}(P)$

maximized when Bx is uniform

 $T(x,y) = D(R_{x,y} || R_{x,x} | y)$ Fix P_{X} Lask at hypothesis testing
 $H_a: (P_{X\setminus A})^{\otimes n}$ H_1 : $(P_x \times P_y)^{Q_n}$ $x^2 \rightarrow$ Stein lemma $\exists \tau \subseteq \chi^k * \mathcal{Y}$ $(P_{x} \times P_{y})^{\theta^{n}}(T) \leq 2^{-n} \frac{D(P_{x1}||P_{x1}P_{y})}{T}$ $\hat{x}(1)$ \cdots $\hat{x}^{n}(2^{nR})$ \vdots Choose $i f \quad \exists j \quad i : (\mathbf{x'}(i), \mathbf{y''}) \in \top$ $g(y^r) = \int c$ other will Channels Quant $-\sqrt{\frac{1}{2}mc}$ M
 $1 - 2nR$ 生 $\overline{}$ achievable density of density of C^{n} \mathbb{C}^n $\mathcal{V}_{XB} = \sum_{i=1}^{n} P_i(i) \langle i | \mathcal{QN}(i) \rangle$ (P_1, P_1) \cdots (P_k, P_k)

$$
C(\mathcal{N}) = \sup_{(P_{N},P_{N}) - (P_{K},P_{K})} \mathcal{I}(X:B)_{\rho}
$$

Observation:
$$
\frac{CH(VgN)}{2}
$$
 is also achievable
\n
$$
Superadditivity: 3 N : \frac{CH(WgN)}{2} > CH(N)
$$
\n
$$
Thm \quad Capacity = \lim_{r \to \infty} \frac{CH(NgN)}{r}
$$